mondrian.rolap

Interface Modulos

• All Known Implementing Classes:
Modulos.Base, Modulos.Many, Modulos.One, Modulos.Three, Modulos.Two, Modulos.Zero

public interface Modulos
Modulos implementations encapsulate algorithms to map between integral ordinals and position arrays. There are particular implementations for the most likely cases where the number of axes is 1, 2 and 3 as well as a general implementation.

Suppose the result is 4 x 3 x 2, then modulo = {1, 4, 12, 24}.

Then the ordinal of cell (3, 2, 1)

= (modulo[0] * 3) + (modulo[1] * 2) + (modulo[2] * 1)
= (1 * 3) + (4 * 2) + (12 * 1)
= 23

Reverse calculation:

p[0] = (23 % modulo[1]) / modulo[0] = (23 % 4) / 1 = 3
p[1] = (23 % modulo[2]) / modulo[1] = (23 % 12) / 4 = 2
p[2] = (23 % modulo[3]) / modulo[2] = (23 % 24) / 12 = 1

Author:
jhyde
• Method Detail

• getCellPos

int[] getCellPos(int cellOrdinal)
Converts a cell ordinal to a set of cell coordinates. Converse of getCellOrdinal(int[]). For example, if this result is 10 x 10 x 10, then cell ordinal 537 has coordinates (5, 3, 7).
Parameters:
cellOrdinal - Cell ordinal
Returns:
cell coordinates
• getCellOrdinal

int getCellOrdinal(int[] pos)
Converts a set of cell coordinates to a cell ordinal. Converse of getCellPos(int).
Parameters:
pos - Cell coordinates
Returns:
cell ordinal